Computer Science Seminar - Dr. Tayo Obafemi-Ajayi

Computer Science Seminar - Dr. Tayo Obafemi-Ajayi
Date and time
11:15 AM - 12:15 PM, October 30, 2020

An Explainable and Statistically Validated Ensemble Clustering Model Applied to the Identification of Traumatic Brain Injury Subgroups.

Massive amounts of data are being collected and analyzed using various learning models with the objective of deriving useful discoveries that could transform or advance our society. Learning from the data collected is playing an increasingly important role in improving the quality of our healthcare. Machine learning (ML) can obtain insights into potential cause and effect for diseases and other conditions related to healthcare. This talk presents a framework for an explainable and statistically validated ensemble clustering model applied to Traumatic Brain Injury (TBI). The objective of our analysis is to identify patient injury severity subgroups and key phenotypes that delineate these subgroups using varied clinical and computed tomography data. Explainable and statistically-validated models are essential because a data-driven identification of subgroups is an inherently multidisciplinary undertaking. This framework for ensemble cluster analysis fully integrates statistical methods at several stages of analysis to enhance the quality and the explainability of results.  

Dr. Tayo Obafemi-Ajayi is an Assistant Professor of Electrical Engineering at Missouri State University (MSU) in the Cooperative Engineering Program, a joint program with Missouri S&T. She is the director of the Computational Learning Systems lab at MSU and the site coordinator of the Missouri Louis Stokes Alliance for Minority Participation (MoLSAMP) program at MSU.

Zoom Meeting ID: 969 7429 9371

Passcode: 519665

Event sponsor


Open to current students, faculty, staff
Zoom: ID and Passcode in description